2023 Annual Drinking Water Quality Report

TX2340014 Myrtle Springs Water Supply Corporation

Annual Water Quality Report for the period of January 1 to December 31, 2023

This report is intended to provide you with important information about your drinking water and the efforts made by the water supply to provide safe drinking water.

For more information regarding this report, contact:

Shelly Granberry, Sysytem Manager

(903) 865-8402

Este reporte incluye información importante sobre el agua para tomar.

Para asistencia en español, favor de llamar al telefono (903) 865-8402.

Information about your Drinking Water

Myrtle Springs WSC provides Ground Water from Carrizo-Wilcox aquifer located in Van Zandt County.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water Assessments

The TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Shelly Granberry, System Manager at (903) 865-8402.

Source Water Name	Type of Water	Report Status	Location
Scott Remote Well #1/CR 3204	Groundwater	Current	Carrizo-Wilcox
Martin Remote Well #3/CR 3204	Groundwater	Current	Carrizo-Wilcox
Well #4/CR 2118 Plant	Groundwater	Current	Carrizo-Wilcox
Well #5/CR 2118 Plant	Groundwater	Current	Carrizo-Wilcox
Well #6/Cherry Blossom Plant	Groundwater	Current	Carrizo-Wilcox
Well #7/Cherry Blossom Plant	Groundwater	Current	Carrizo-Wilcox
Well #8/CR 2120 Plant	Groundwater	Current	Carrizo-Wilcox
Well #9/CR 2120 Plant	Groundwater	Current	Carrizo-Wilcox
Well #10/CR 2120 Plant	Groundwater	Current	Carrizo-Wilcox
Well #11/CR 2120 Plant	Groundwater	Current	Carrizo-Wilcox

Definitions and Abbreviations

The following table contains scientific terms and measures, some of which may require explanation.

Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Maximum	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible
Contaminant Level or	using the best available treatment technology.
MCL:	
Maximum	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow
Contaminant Level	for a margin of safety.
Goal or MCLG:	
Level 1 Assessment:	A Level 1 Assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 Assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E.coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Residual	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a
Disinfectant Level or	disinfectant is necessary for control of microbial contaminants.
MRDL:	

Maximum Residual	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not							
Disinfectant Level	eflect the benefits of the use of disinfectants to control microbial contaminants.							
Goal or MRDLG:								
MFL:	Million Fibers per Liter (a measure of asbestos)							
na:	Not applicable							
mrem:	Millirems per year (a measure of radiation absorbed by the body)							
NTU:	Nephelometric Turbidity Unit (a measure of turbidity)							
pCi/L:	Picocuries per Liter (a measure of radioactivity)							
ppb:	Parts per Billion or Micrograms per Liter							
ppm:	Parts per Million or Milligrams per Liter							
Treatment Technique	A required process intended to reduce the level of contaminant in drinking water.							
or TT:								
ppt:	Parts per Trillion or Nanograms per Liter (ng/L)							
ppq:	Parts per Quadrillion or Picograms per Liter (pg/L)							

Disinfectant Residual

Disinfectant	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Violation (Y or N)	Likely Source of Contamination
Chlorine	2023	1.15	.20	3.70	4	4	ppm	N	Water additive used to control microbes.

Lead and Copper	Date	MCLG	Action	90 [™]	# of Sites	Units of	Violation	Likely Source of Contamination
	Sampled		Level (AL)	Percentile	AL	Measure	(Y or N)	
Copper	2023	1.3	1.3	0.488	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2017	0	15	1.1	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

2023 Water Quality Test Results

Disinfection By- Products	Collection Date	Highest Level	Range of Individual	MCLG	MCL	Units of Measure	Violation (Y or N)	Likely Source of Contamination
		Detected	Samples					
Haloacetic Acids (HAA5)	2023	11	9.5 – 10.5	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	65	60.7 - 65	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

^{*}The value in Highest Level or Average Detected column is the highest average of all HAA5/TTHM sample results collected at a location over a year.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units of Measure	Violation (Y or N)	Likely Source of Contamination
Arsenic	2020	1	0-1.1	0	10	ppb	N	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.047	0.02 – 0.047	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium	2021	3.5	3.5 – 3.5	100	100	ppb	N	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride	2023	0.102	0.0568 – 0.102	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate (measured as Nitrogen)	2023	0.0377	0.0252 – 0.0377	10	10	ppm	N	Runoff from fertilizer use; Leaching septic tanks; Sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units of Measure	Violation (Y or N)	Likely Source of Contamination
Combined Radium 226/228	2022	1.5	1.5 – 1.5	0	5	pCi/L	N	Erosion of natural deposits.
Beta/photon emitters	2022	7.1	7.1 – 7.1	0	50	pCi/L*	N	Decay of natural and man-made deposits.

Synthetic organic contaminants including pesticides & herbicides	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation (Y or N)	Likely Source of Contamination
Picloram	2023	0.191	0 – 0.191	500	500	ppb	N	Water additive used to control microbes.

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units of Measure	Violation (Y or N)	Likely Source of Contamination
Ethylbenzene	2020	0.63	0 – 0.63	700	700	ppb	N	Discharge from petroleum refineries.
Xylenes	2023	0.00289	0 – 0.00289	10	10	ppm	N	Discharge from petroleum factories; Discharge from chemical factories.

Violations

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper plumbing materials.

Violation Type	Violation Begin	Violation End	n End Violation Explanation			
Lead and Copper Rule (LCR)	9/29/2020	4/3/2023	We failed to provide the results of lead tap water monitoring to the consumers at the locations water was tested. These were supposed to be provided no later than 30 days after learning the results.			